Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107911, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37810237

RESUMO

The Báthory family was one of the most powerful noble families in the medieval Hungarian Kingdom. Their influence peaked during the Ottoman occupation of Hungary, when the only partially autonomous region of the country was Transylvania, under Turkish protectorate. Several members of the family became Princes of Transylvania, and one of them, István Báthory, was also the elected King of Poland. We hereby present the first genetic data about this extinct family. Archaeological excavations in Pericei, a settlement now part of Romania, revealed the former family chapel of the Báthory family. Through this work, two Báthory family members were successfully identified among the 13 skeletons found at the site. The presence of Y chromosome haplogroup R-S498 fits the historical account describing the family's German (Swabian) origins. Their genomic composition also indicates a family of Germanic origin that intermixed with medieval Hungarians.

3.
Heliyon ; 8(11): e11731, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425424

RESUMO

The Hunyadi family is one of the most influential families in the history of Central Europe in the 14th-16th centuries. The family's prestige was established by Johannes Hunyadi, a Turk-beater who rose to the position of governor of the Kingdom of Hungary. His second son, Matthias Hunyadi, became the elected ruler of the Kingdom of Hungary in 1458. The Hunyadi family had unknown origin. Moreover, Matthias failed to found a dynasty because of lacking a legitimate heir and his illegitimate son Johannes Corvinus was unable to obtain the crown. His grandson, Christophorus Corvinus, died in childhood, thus the direct male line of the family ended. In the framework of on interdisciplinary research, we have determined the whole genome sequences of Johannes Corvinus and Christophorus Corvinus by next-generation sequencing technology. Both of them carried the Y-chromosome haplogroup is E1b1b1a1b1a6a1c ∼, which is widespread in Eurasia. The father-son relationship was verified using the classical STR method and whole genome data. Christophorus Corvinus belongs to the rare, sporadically occurring T2c1+146 mitochondrial haplogroup, most frequent around the Mediterranean, while his father belongs to the T2b mitochondrial haplogroup, widespread in Eurasia, both are consistent with the known origin of the mothers. Archaeogenomic analysis indicated that the Corvinus had an ancient European genome composition. Based on the reported genetic data, it will be possible to identify all the other Hunyadi family member, whose only known grave site is known, but who are resting assorted with several other skeletons.

4.
Curr Biol ; 32(13): 2858-2870.e7, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35617951

RESUMO

Huns, Avars, and conquering Hungarians were migration-period nomadic tribal confederations that arrived in three successive waves in the Carpathian Basin between the 5th and 9th centuries. Based on the historical data, each of these groups are thought to have arrived from Asia, although their exact origin and relation to other ancient and modern populations have been debated. Recently, hundreds of ancient genomes were analyzed from Central Asia, Mongolia, and China, from which we aimed to identify putative source populations for the above-mentioned groups. In this study, we have sequenced 9 Hun, 143 Avar, and 113 Hungarian conquest period samples and identified three core populations, representing immigrants from each period with no recent European ancestry. Our results reveal that this "immigrant core" of both Huns and Avars likely originated in present day Mongolia, and their origin can be traced back to Xiongnus (Asian Huns), as suggested by several historians. On the other hand, the "immigrant core" of the conquering Hungarians derived from an earlier admixture of Mansis, early Sarmatians, and descendants of late Xiongnus. We have also shown that a common "proto-Ugric" gene pool appeared in the Bronze Age from the admixture of Mezhovskaya and Nganasan people, supporting genetic and linguistic data. In addition, we detected shared Hun-related ancestry in numerous Avar and Hungarian conquest period genetic outliers, indicating a genetic link between these successive nomadic groups. Aside from the immigrant core groups, we identified that the majority of the individuals from each period were local residents harboring "native European" ancestry.


Assuntos
Pool Gênico , Genética Populacional , Povo Asiático , Haplótipos , Humanos , Hungria
5.
Genes (Basel) ; 13(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456371

RESUMO

According to the written historical sources, the Gepids were a Germanic tribe that settled in the Carpathian Basin during the Migration Period. They were allies of the Huns, and an independent Gepid Kingdom arose after the collapse of the Hun Empire. In this period, the Carpathian Basin was characterized by so-called row-grave cemeteries. Due to the scarcity of historical and archaeological data, we have a poor knowledge of the origin and composition of these barbarian populations, and this is still a subject of debate. To better understand the genetic legacy of migration period societies, we obtained 46 full mitogenome sequences from three Gepid cemeteries located in Transylvania, Romania. The studied samples represent the Classical Gepidic period and illustrate the genetic make-up of this group from the late 5th and early 6th centuries AD, which is characterized by cultural markers associated with the Gepid culture in Transylvania. The genetic structure of the Gepid people is explored for the first time, providing new insights into the genetic makeup of this archaic group. The retrieved genetic data showed mainly the presence of Northwestern European mitochondrial ancient lineages in the Gepid group and all population genetic analyses reiterated the same genetic structure, showing that early ancient mitogenomes from Europe were the major contributors to the Gepid maternal genetic pool.


Assuntos
Pool Gênico , Genética Populacional , Arqueologia , Cemitérios , Humanos , População Branca
6.
Mol Genet Genomics ; 297(3): 889-901, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35411488

RESUMO

We introduce a novel population genetic approach suitable to model the origin and relationships of populations, using new computation methods analyzing Hg frequency distributions. Hgs were selected into groups which show correlated frequencies in subsets of populations, based on the assumption that correlations were established in ancient separation, migration and admixture processes. Populations are defined with this universal Hg database, then using unsupervised artificial intelligence, central vectors (CVs) are determined from local condensations of the Hg-distribution vectors in the multidimensional point system. Populations are clustered according to their proximity to CVs. We show that CVs can be regarded as approximations of ancient populations and real populations can be modeled as weighted linear combinations of the CVs using a new linear combination algorithm based on a gradient search for the weights. The efficacy of the method is demonstrated by comparing Copper Age populations of the Carpathian Basin to Middle Age ones and modern Hungarians. Our analysis reveals significant population continuity since the Middle Ages, and the presence of a substrate component since the Copper Age.


Assuntos
Inteligência Artificial , Mercúrio , Algoritmos , DNA Mitocondrial/genética , Genética Populacional , Haplótipos/genética , Hungria , Filogenia
7.
Genes (Basel) ; 12(3)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807111

RESUMO

Nomadic groups of conquering Hungarians played a predominant role in Hungarian prehistory, but genetic data are available only from the immigrant elite strata. Most of the 10-11th century remains in the Carpathian Basin belong to common people, whose origin and relation to the immigrant elite have been widely debated. Mitogenome sequences were obtained from 202 individuals with next generation sequencing combined with hybridization capture. Median joining networks were used for phylogenetic analysis. The commoner population was compared to 87 ancient Eurasian populations with sequence-based (Fst) and haplogroup-based population genetic methods. The haplogroup composition of the commoner population markedly differs from that of the elite, and, in contrast to the elite, commoners cluster with European populations. Alongside this, detectable sub-haplogroup sharing indicates admixture between the elite and the commoners. The majority of the 10-11th century commoners most likely represent local populations of the Carpathian Basin, which admixed with the eastern immigrant groups (which included conquering Hungarians).


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Análise de Sequência de DNA/métodos , Migrantes/história , Cemitérios , Genética Populacional , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , História Medieval , Humanos , Hungria/etnologia , Herança Materna , Filogenia , Polimorfismo de Nucleotídeo Único
8.
Sci Rep ; 9(1): 16569, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719606

RESUMO

Hun, Avar and conquering Hungarian nomadic groups arrived to the Carpathian Basin from the Eurasian Steppes and significantly influenced its political and ethnical landscape, however their origin remains largely unknown. In order to shed light on the genetic affinity of above groups we have determined Y chromosomal haplogroups and autosomal loci, suitable to predict biogeographic ancestry, from 49 individuals, supposed to represent the power/military elit. Haplogroups from the Hun-age are consistent with Xiongnu ancestry of European Huns. Most of the Avar-age individuals carry east Eurasian Y haplogroups typical for modern north-eastern Siberian and Buryat populations and their autosomal loci indicate mostly un-admixed Asian characteristics. In contrast the conquering Hungarians seem to be a recently assembled population incorporating un-admixed European, Asian as well as admixed components. Their heterogeneous paternal and maternal lineages indicate similar supposed phylogeographic origin of males and females, derived from Central-Inner Asian and European Pontic Steppe sources.


Assuntos
Cromossomos Humanos Y/genética , Etnicidade/genética , Haplótipos/genética , Genética Populacional , Humanos , Hungria , Masculino , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
10.
PLoS One ; 13(10): e0205920, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30335830

RESUMO

It has been widely accepted that the Finno-Ugric Hungarian language, originated from proto Uralic people, was brought into the Carpathian Basin by the conquering Hungarians. From the middle of the 19th century this view prevailed against the deep-rooted Hungarian Hun tradition, maintained in folk memory as well as in Hungarian and foreign written medieval sources, which claimed that Hungarians were kinsfolk of the Huns. In order to shed light on the genetic origin of the Conquerors we sequenced 102 mitogenomes from early Conqueror cemeteries and compared them to sequences of all available databases. We applied novel population genetic algorithms, named Shared Haplogroup Distance and MITOMIX, to reveal past admixture of maternal lineages. Our results show that the Conquerors assembled from various nomadic groups of the Eurasian steppe. Population genetic results indicate that they had closest connection to the Onogur-Bulgar ancestors of Volga Tatars. Phylogenetic results reveal that more than one third of the Conqueror maternal lineages were derived from Central-Inner Asia and their most probable ultimate sources were the Asian Scythians and Asian Huns, giving support to the Hungarian Hun tradition. The rest of the lineages most likely originated from the Bronze Age Potapovka-Poltavka-Srubnaya cultures of the Pontic-Caspian steppe. Available data imply that the Conquerors did not have a major contribution to the gene pool of the Carpathian Basin.


Assuntos
Povo Asiático/genética , Genoma Mitocondrial , Filogenia , Cemitérios , Pool Gênico , Genética Populacional , Geografia , Migração Humana , Humanos , Hungria , Crânio/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA